提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)
(2)归纳推理
①归纳推理的定义
归纳推理是指从一系列个别性的判断出发,引申出一般性结论的推理。这种推理的推导方向是由个别到一般。
②归纳推理的分类
归纳推理按照其推理的前提中是否考查了一类事物的全部,可以分为完全归纳推理和不完全归纳推理。不完全归纳推理,又分为简单枚举归纳推理和科学归纳推理。此外,还有概率归纳推理和溯因归纳推理。
需要注意的是,归纳推理中的“完全”和“不完全”是相对的,它是就推理前提的数量方面来说的。所谓“完全”是从整体上来对一类对象的全体加以考查;所谓“不完全”则是从局部(部分)上来对一类对象的全体加以推断。因此,它只具有相对的意义。
A.完全归纳推理
完全归纳推理,是以某一类对象中的每一个成员都具有(或不具有)某种属性为前提,因而推断出该类对象的全体都具有(或不具有)这种属性的推理。因此,完全归纳推理的前提是个别性的,其结论却是一般性的。完全归纳推理的结构可用公式表示为:
S1是(或不是)P,
S2是(或不是)P,
S3是(或不是)P,
Sn是(或不是)P。
S1.…..Sn是S类的全部对象。
所以,S是(或不是)P。
B.不完全归纳推理
不完全归纳推理,是以某一类对象中的部分对象具有或不具有某种性质,因而推出该类对象的全体具有或不具有这种性质的一般性结论的推理。
不完全归纳推理根据前提中是否考察了事物对象与其属性间的内在联系,可以分为简单枚举归纳推理和科学归纳推理。
(3)类比推理
①类比推理的定义
类比推理是从两个或两类对象的某些相同属性出发,从而引申出它们在另一属性上也相同的结论。类比推理从前提到结论的推导方向,是由特殊到特殊。
【示例】美国过去曾从我国移植去不少优良品种,油桐原是我国四川的特产,后被移植到美国佛罗里达州。
为什么会想到将油桐由我国四川移植到美国的佛罗里达州呢?把这两个地区进行了一番比较,就可以作出一个如下的类比推理:
美国佛罗里达州与我国四川省在地理环境(地形、土壤、水文等)是相似的;
美国佛罗里达州与我国四川省在气候条件(温度、湿度、光照等)也是相似的;
我国四川省适宜种植油桐:
所以,美国佛罗里达州也适宜种油桐。
②类比推理的特点
逻辑知识研究者归纳出来的类比推理的特点有:
第一,类比推理建立在两个或两类对象对比基础上。
第二,类比推理可以拓展认识成果,将对一个对象的认识,拓展到另一个对象。
第三,类比推理是产生灵感的工具。
第四,类比推理也是表达思想、说服教育的工具。
③类比推理的种类
类比推理可以从正面进行,也可以从反面进行,还可以从正反两方面进行。从正面进行类比叫做正类比;从反面进行类比叫做反类比;从正反两个方面进行类比叫做合类比。
A.正类比
从两个或两类对象具有若干相同的属性,又知其中一个或一类对象还有某一属性,从而推出另一个或另一类对象也有这一属性的推理。
正类比推理的公式可表述如下:A对象有A、B、C、D属性;B对象有A、B、C属性;所以B对象可能有D属性。
B.反类比
从两个或两类对象都不具有某些属性,又知其中某个或某类对象还无某一属性,进而推知另一个或另一类对象也无这一属性的推理。
反类比推理的公式可表述如下:A对象无A、B、C、D属性;B对象无A、B、C属性;所以B对象可能无D属性。
C.合类比
从两个或两类对象属性的相似性中,推出它们在某一属性上也相似,又从该两个或两类对象所不具有的属性中,推出它们也不具有某一属性的推理。合类比推理公式可表述如下:A对象有A、B、C、D而无e、f、g、h属性;B对象有A、B、C而无e、f、g属性;所以B对象可能有D而无h属性。
⑧类比推理的应用
类比推理能够使人们举一反三,触类旁通,获得创造性的启发或灵感,从而找到解决难题之道。
类比推理的结论是或然的,也就是说可能为假,因为对象之间固然有相似之处,但也有差别所在。
于是,从两个或两类对象在某些地方相似,推出它们在另外的地方仍相似的结论就不具有必然性。类比结论的可靠性程度取决于许多因素,要降低或然性程度,就要注意以下问题:
第一,类比对象之间的相同点越多,其结论的可靠性程度也就越大。
第二,已知相同属性与推出属性之间的相关程度越高,类比结论的可靠性越大;相关程度越低可靠性越小。如果我们能证明A对象所具有的A、B、C属性,与D属性之间存在着某种联系,即只要有A、B、C存在,便必然有D存在,那么由于B对象也具有A、B、C属性,所以我们推得它也具有D属性便是必然的、正确的。反之,如果我们发现在B对象的属性中,有某种属性不能与D并存,那么我们说B对象也可能具有D属性的结论便是错误的。
第三,不能将A对象所具有的某种偶然性拿来跟B对象类比,由此推断B对象也具有这种偶然性。
提醒:点这里加小编微信(领取免费资料、获取最新资讯、解决考教师一切疑问!)